|
|
#!/usr/bin/env python
|
|
|
# -*- coding: utf-8 -*-
|
|
|
# @Time : 2025/3/16 09:46
|
|
|
# @Author : old-tom
|
|
|
# @File : llm_agent
|
|
|
# @Project : llmFunctionCallDemo
|
|
|
# @Desc : llm代理
|
|
|
|
|
|
from llmagent.llm_config import LLMConfigLoader
|
|
|
from abc import ABC
|
|
|
from llmtools import TOOLS_BIND_FUNCTION, STRUCT_TOOLS
|
|
|
from llmagent import PROMPT_TEMPLATE
|
|
|
from langchain_openai import ChatOpenAI
|
|
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
|
from langchain_core.chat_history import BaseChatMessageHistory, InMemoryChatMessageHistory
|
|
|
from langchain_core.runnables.history import RunnableWithMessageHistory
|
|
|
from langchain_core.messages import HumanMessage
|
|
|
from log_conf import log
|
|
|
|
|
|
# 默认系统提示词
|
|
|
DEFAULT_SYS_PROMPT = ''
|
|
|
|
|
|
parser = StrOutputParser()
|
|
|
|
|
|
# 模型初始化,注意修改env.toml中的配置
|
|
|
# llm_conf = LLMConfigLoader.load(item_name='ark')
|
|
|
llm_conf = LLMConfigLoader.load(item_name='siliconflow')
|
|
|
llm = ChatOpenAI(
|
|
|
model=llm_conf.model, api_key=llm_conf.api_key,
|
|
|
base_url=llm_conf.base_url, max_tokens=llm_conf.max_tokens,
|
|
|
temperature=llm_conf.temperature,
|
|
|
streaming=llm_conf.streaming
|
|
|
)
|
|
|
|
|
|
# 历史消息存储(内存)
|
|
|
his_store = {}
|
|
|
|
|
|
|
|
|
def get_session_history(session_id: str) -> BaseChatMessageHistory:
|
|
|
"""
|
|
|
获取历史消息
|
|
|
:param session_id:
|
|
|
:return:
|
|
|
"""
|
|
|
if session_id not in his_store:
|
|
|
# 内存存储(可以替换为数据库或者其他,参考 BaseChatMessageHistory 实现类)
|
|
|
his_store[session_id] = InMemoryChatMessageHistory()
|
|
|
return his_store[session_id]
|
|
|
|
|
|
|
|
|
class BaseChatAgent(ABC):
|
|
|
"""
|
|
|
抽象Agent类
|
|
|
"""
|
|
|
|
|
|
def __init__(self, system_prompt: str = DEFAULT_SYS_PROMPT):
|
|
|
"""
|
|
|
:param system_prompt: 系统提示词
|
|
|
"""
|
|
|
# 单轮对话提示词模版
|
|
|
self.prompt = ChatPromptTemplate(
|
|
|
[
|
|
|
("system", system_prompt),
|
|
|
("human", "{user_input}")
|
|
|
]
|
|
|
)
|
|
|
# 多轮对话提示词模版
|
|
|
self.multi_round_prompt = ChatPromptTemplate.from_messages([
|
|
|
("system", system_prompt),
|
|
|
MessagesPlaceholder(variable_name="messages")
|
|
|
])
|
|
|
|
|
|
def invoke(self, user_input: str) -> str:
|
|
|
"""
|
|
|
请求模型并一次性返回
|
|
|
:param user_input: 用户输入
|
|
|
:return:
|
|
|
"""
|
|
|
chain = self.prompt | llm
|
|
|
return chain.invoke({
|
|
|
'user_input': user_input
|
|
|
}).content
|
|
|
|
|
|
def invoke_by_stream(self, user_input: str):
|
|
|
"""
|
|
|
请求模型并流式返回(同步流)
|
|
|
:param user_input: 用户输入
|
|
|
:return:
|
|
|
"""
|
|
|
chain = self.prompt | llm | parser
|
|
|
response = chain.stream({'user_input': user_input})
|
|
|
for chunk in response:
|
|
|
print(chunk, flush=True, end='')
|
|
|
|
|
|
def multi_round_with_stream(self, user_input: str, session_id: int):
|
|
|
"""
|
|
|
多轮对话
|
|
|
:param user_input: 用户输入
|
|
|
:param session_id: 对话sessionId
|
|
|
:return:
|
|
|
"""
|
|
|
config = {"configurable": {"session_id": session_id}}
|
|
|
chain = self.multi_round_prompt | llm | parser
|
|
|
with_message_history = RunnableWithMessageHistory(chain, get_session_history, input_messages_key="messages")
|
|
|
response = with_message_history.stream({
|
|
|
'messages': [HumanMessage(content=user_input)]
|
|
|
}, config=config)
|
|
|
for chunk in response:
|
|
|
print(chunk, flush=True, end='')
|
|
|
|
|
|
@staticmethod
|
|
|
def invoke_with_tool(user_input: str):
|
|
|
"""
|
|
|
工具调用,function calling时system prompt不会生效,并且不支持流式返回
|
|
|
:param user_input:
|
|
|
:return: 这里返回的是LLM推理出的tool信息,格式如下:
|
|
|
[{'name': 'get_current_weather', 'args': {'location': 'Beijing, China'}, 'id': 'call_xeeq4q52fw9x61lkrqwy9cr6', 'type': 'tool_call'}]
|
|
|
"""
|
|
|
llm_with_tools = llm.bind_tools(STRUCT_TOOLS)
|
|
|
return llm_with_tools.invoke(user_input).tool_calls
|
|
|
|
|
|
@staticmethod
|
|
|
def invoke_with_tool_call(user_input: str):
|
|
|
"""
|
|
|
单轮对话,调用工具并返给LLM
|
|
|
:param user_input:
|
|
|
:return:
|
|
|
"""
|
|
|
# 自定义的提示词
|
|
|
user_msg = PROMPT_TEMPLATE.get('VOICE_ASSISTANT')['template'].format(user_input=user_input)
|
|
|
messages = [HumanMessage(user_msg)]
|
|
|
llm_with_tools = llm.bind_tools(STRUCT_TOOLS)
|
|
|
# 这里是判断使用哪个工具,需要加提示限制模型不能修改参数
|
|
|
call_msg = llm_with_tools.invoke(user_input)
|
|
|
messages.append(call_msg)
|
|
|
for tool_call in call_msg.tool_calls:
|
|
|
selected_tool = TOOLS_BIND_FUNCTION[tool_call["name"].lower()]
|
|
|
# 使用 tool_call 调用会生成ToolMessage
|
|
|
tool_msg = selected_tool.invoke(tool_call)
|
|
|
messages.append(tool_msg)
|
|
|
log.info('【function call】构造输入为{}', messages)
|
|
|
# messages 中包含了 人类指令、AI指令、工具指令
|
|
|
return llm_with_tools.invoke(messages).content
|
|
|
|
|
|
|
|
|
class ChatAgent(BaseChatAgent):
|
|
|
pass
|