You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

92 lines
2.7 KiB

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2025/4/17 15:28
# @Author : old-tom
# @File : llm_agent
# @Project : reActLLMDemo
# @Desc : 代理
4 months ago
from typing import Annotated
4 months ago
from langgraph.checkpoint.memory import MemorySaver
from langchain_openai import ChatOpenAI
from llmagent.llm_config import LLMConfigLoader
from llmagent.llm_config import base_conf
from llmtools.tool_impl import tools, tool_node
from langchain_core.messages import AnyMessage
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import tools_condition
# 内存记忆
memory = MemorySaver()
# 初始化LLM模型
llm_conf = LLMConfigLoader.load(item_name=base_conf.model_form)
llm = ChatOpenAI(
model=llm_conf.model, api_key=llm_conf.api_key,
base_url=llm_conf.base_url, max_tokens=llm_conf.max_tokens,
temperature=llm_conf.temperature,
streaming=llm_conf.streaming
)
# 绑定工具
llm_with_tools = llm.bind_tools(tools)
class AgentState(TypedDict):
"""
状态机
add_messages 函数会自动合并message到一个list中例如HumanMessage\AIMessage
"""
messages: Annotated[list[AnyMessage], add_messages]
graph_builder = StateGraph(AgentState)
def chat(state: AgentState):
"""
LLM单轮对话
:param state: 状态机
LLM需要从状态机获取message
:return:
"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
# LLM节点
graph_builder.add_node("chat_llm", chat)
# 工具节点
graph_builder.add_node("tools", tool_node)
graph_builder.add_edge(START, "chat_llm")
graph_builder.add_edge("chat_llm", END)
# 添加条件边tools_condition 是官方实现的函数用于判断是否应该调用tool或者直接结束
graph_builder.add_conditional_edges("chat_llm", tools_condition)
graph_builder.add_edge("tools", "chat_llm")
# checkpointer 是检查点设置
graph = graph_builder.compile(name='语音助手', checkpointer=memory)
def stream_graph_updates(user_input: str):
config = {"configurable": {"thread_id": "1"}}
for chunk, metadata in graph.stream({"messages": [{"role": "user", "content": user_input}]}, config,
stream_mode='messages'):
if chunk.content:
print(chunk.content, end='', flush=True)
print('\n')
while True:
try:
user_input = input("User: ")
if user_input.lower() in ["quit", "exit", "q"]:
print("Goodbye!")
break
stream_graph_updates(user_input)
except:
user_input = "What do you know about LangGraph?"
print("User: " + user_input)
stream_graph_updates(user_input)
break